RandomResizedCrop in PyTorch (5)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below. *It’s about ratio argument (1):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode
origin_data = OxfordIIITPet(
root="data",
transform=None
)
s1000r1_1origin_data = OxfordIIITPet( # `s` is size and `r` is ratio.
    root="data",
transform=RandomResizedCrop(size=1000, ratio=[1, 1])
)
s1000r01_10_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.1, 10])
)
s1000r01_1_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.1, 1])
)
s1000r1_10_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[1, 10])
)
s1000r09_09_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.9, 0.9])
)
s1000r08_08_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.8, 0.8])
)
s1000r07_07_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.7, 0.7])
)
s1000r06_06_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.6, 0.6])
)
s1000r05_05_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.5, 0.5])
)
s1000r04_04_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.4, 0.4])
)
s1000r03_03_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.3, 0.3])
)
s1000r02_02_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.2, 0.2])
)
s1000r01_01_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.1, 0.1])
)
s1000r001_001_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.01, 0.01])
)
s1000r0001_0001_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.001, 0.001])
)
s1000r00001_00001_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[0.0001, 0.0001])
)
s1000r2_2_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[2, 2])
)
s1000r3_3_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[3, 3])
)
s1000r4_4_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[4, 4])
)
s1000r5_5_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[5, 5])
)
s1000r6_6_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[6, 6])
)
s1000r7_7_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[7, 7])
)
s1000r8_8_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[8, 8])
)
s1000r9_9_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[9, 9])
)
s1000r10_10_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[10, 10])
)
s1000r100_100_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[100, 100])
)
s1000r1000_1000_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[1000, 1000])
)
s1000r10000_10000_data = OxfordIIITPet(
root="data",
transform=RandomResizedCrop(size=1000, ratio=[10000, 10000])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r01_10_data, main_title="s1000r01_10_data")
show_images1(data=s1000r01_1_data, main_title="s1000r01_1_data")
show_images1(data=s1000r1_10_data, main_title="s1000r1_10_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r09_09_data , main_title="s1000r09_09_data")
show_images1(data=s1000r08_08_data, main_title="s1000r08_08_data")
show_images1(data=s1000r07_07_data, main_title="s1000r07_07_data")
show_images1(data=s1000r06_06_data, main_title="s1000r06_06_data")
show_images1(data=s1000r05_05_data, main_title="s1000r05_05_data")
show_images1(data=s1000r04_04_data, main_title="s1000r04_04_data")
show_images1(data=s1000r03_03_data, main_title="s1000r03_03_data")
show_images1(data=s1000r02_02_data, main_title="s1000r02_02_data")
show_images1(data=s1000r01_01_data, main_title="s1000r01_01_data")
show_images1(data=s1000r001_001_data, main_title="s1000r001_001_data")
show_images1(data=s1000r0001_0001_data, main_title="s1000r0001_0001_data")
show_images1(data=s1000r00001_00001_data, main_title="s1000r00001_00001_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r2_2_data, main_title="s1000r2_2_data")
show_images1(data=s1000r3_3_data, main_title="s1000r3_3_data")
show_images1(data=s1000r4_4_data, main_title="s1000r4_4_data")
show_images1(data=s1000r5_5_data, main_title="s1000r5_5_data")
show_images1(data=s1000r6_6_data, main_title="s1000r6_6_data")
show_images1(data=s1000r7_7_data, main_title="s1000r7_7_data")
show_images1(data=s1000r8_8_data, main_title="s1000r8_8_data")
show_images1(data=s1000r9_9_data, main_title="s1000r9_9_data")
show_images1(data=s1000r10_10_data, main_title="s1000r10_10_data")
show_images1(data=s1000r100_100_data, main_title="s1000r100_100_data")
show_images1(data=s1000r1000_1000_data, main_title="s1000r1000_1000_data")
show_images1(data=s1000r10000_10000_data, main_title="s1000r10000_10000_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1),
r=(0.75, 1.3333333333333333),
ip=InterpolationMode.BILINEAR, a=True):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rrc = RandomResizedCrop(size=s, scale=sc,
ratio=r, interpolation=ip,
antialias=a)
plt.imshow(X=rrc(im))
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,  
r=[1, 1])
show_images2(data=origin_data, main_title="s1000r01_10_data", s=1000,
r=[0.1, 10])
show_images2(data=origin_data, main_title="s1000r01_1_data", s=1000,
r=[0.1, 1])
show_images2(data=origin_data, main_title="s1000r1_10_data", s=1000, r=[1, 10])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
r=[1, 1])
show_images2(data=origin_data, main_title="s1000r09_09_data", s=1000,
r=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000r08_08_data", s=1000,
r=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000r07_07_data", s=1000,
r=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000r06_06_data", s=1000,
r=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000r05_05_data", s=1000,
r=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000r04_04_data", s=1000,
r=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000r03_03_data", s=1000,
r=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000r02_02_data", s=1000,
r=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000r01_01_data", s=1000,
r=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000r001_001_data", s=1000,
r=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000r0001_0001_data", s=1000,
r=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000r00001_00001_data", s=1000,
r=[0.0001, 0.0001])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
r=[1, 1])
show_images2(data=origin_data, main_title="s1000r2_2_data", s=1000, r=[2, 2])
show_images2(data=origin_data, main_title="s1000r3_3_data", s=1000, r=[3, 3])
show_images2(data=origin_data, main_title="s1000r4_4_data", s=1000, r=[4, 4])
show_images2(data=origin_data, main_title="s1000r5_5_data", s=1000, r=[5, 5])
show_images2(data=origin_data, main_title="s1000r6_6_data", s=1000, r=[6, 6])
show_images2(data=origin_data, main_title="s1000r7_7_data", s=1000, r=[7, 7])
show_images2(data=origin_data, main_title="s1000r8_8_data", s=1000, r=[8, 8])
show_images2(data=origin_data, main_title="s1000r9_9_data", s=1000, r=[9, 9])
show_images2(data=origin_data, main_title="s1000r10_10_data", s=1000,
r=[10, 10])
show_images2(data=origin_data, main_title="s1000r100_100_data", s=1000,
r=[100, 100])
show_images2(data=origin_data, main_title="s1000r1000_1000_data", s=1000,
r=[1000, 1000])
show_images2(data=origin_data, main_title="s1000r10000_10000_data", s=1000,
r=[10000, 10000])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Leave a Reply